Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach
نویسندگان
چکیده
This paper takes a uniform look at the customized applications of proximal point algorithm (PPA) to two classes of problems: the linearly constrained convex minimization problem with a generic or separable objective function and a saddle-point problem. We model these two classes of problems uniformly by a mixed variational inequality, and show how PPA with customized proximal parameters can yield favorable algorithms, which are able to exploit the structure of the models fully. Our customized PPA revisit turns out to be a uniform approach in designing a number of efficient algorithms, which are competitive with, or even more efficient than some benchmark methods in the existing literature such as the augmented Lagrangian method, the alternating direction method, the split inexact Uzawa method, and a class of primal-dual methods, etc. From the PPA perspective, the global convergence and the O(1/t) convergence rate for this series of algorithms are established in a uniform way.
منابع مشابه
Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators
The majority of First Order methods for large-scale convex-concave saddle point problems and variational inequalities with monotone operators are proximal algorithms which at every iteration need to minimize over problem’s domain X the sum of a linear form and a strongly convex function. To make such an algorithm practical, X should be proximal-friendly – admit a strongly convex function with e...
متن کاملOn Relaxation of Some Customized Proximal Point Algorithms for Convex Minimization: From Variational Inequality Perspective
The proximal point algorithm (PPA) is a fundamental method for convex programming. When PPA applied to solve linearly constrained convex problems, we may prefer to choose an appropriate metric matrix to define the proximal regularization, so that the computational burden of the resulted PPA can be reduced, and in most cases, even admit closed form or efficient solutions. This idea results in th...
متن کاملA primal-dual algorithm framework for convex saddle-point optimization
In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the co...
متن کاملRandomized First-Order Methods for Saddle Point Optimization
In this paper, we present novel randomized algorithms for solving saddle point problems whose dual feasible region is given by the direct product of many convex sets. Our algorithms can achieve an O(1/N) and O(1/N) rate of convergence, respectively, for general bilinear saddle point and smooth bilinear saddle point problems based on a new prima-dual termination criterion, and each iteration of ...
متن کاملExploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms
We consider empirical risk minimization of linear predictors with convex loss functions. Such problems can be reformulated as convex-concave saddle point problems, and thus are well suitable for primal-dual first-order algorithms. However, primal-dual algorithms often require explicit strongly convex regularization in order to obtain fast linear convergence, and the required dual proximal mappi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014